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ABSTRACT 
 
Free vibration of layered conical shell frusta of thickness filled with fluid is investigated. The shell 
is made up of isotropic or specially orthotropic materials. Three types of thickness variations are 
considered, namely linear, exponential and sinusoidal along the radial direction of the conical shell 
structure. The equations of motion of the conical shell frusta is formulated using Love’s first 
approximation theory along with the fluid interaction. Velocity potential and Bernoulli’s equations 
have been applied for the expression of the pressure of the fluid. The fluid is assumed to be 
incompressible, inviscid and quiescent. The governing equations are modified by applying the 
separable form to the displacement functions and then it is obtained a system of coupled 
differential equations in terms of displacement functions. The displacement functions are 
approximated by cubic and quintics splines along with the boundary conditions to get generalized 
eigenvalue problem. The generalized eigenvalue problem is solved numerically for frequency 
parameters and then associated eigenvectors are calculated which are spline coefficients. The 
vibration of the shells with the effect of fluid is analysed for finding the frequency parameters 
against the cone angle, length ratio, relative layer thickness, number of layers, stacking sequence, 
boundary conditions, linear, exponential and sinusoidal thickness variations and then results are 
presented in terms of tables and graphs. 
Keywords: conical shell; free vibration; love’s first approximation theory; quiescent fluid; 
spline approximation; variable thickness 
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1. INTRODUCTION 
 
     Love was first proposed Classical Shell Theory (CST) for bending analysis of shells 
which also include a linear analysis of thin shells (Love, 1994). Since the theory was 
based on Kirchhoff-Love assumption, then it is referred to as Love’s first approximation 
theory. Since then, thin shell theories were developed through different assumptions and 
simplifications, such as Reissner, Naghdi, Sander and Flügge’s theories (Leissa, 1973). 
By relaxing the normality condition, First Order Shear Deformation Theory (FSDT) were 
formulated (Reddy, 2004).  By considering different theories of shells, research on 
vibration in shell structures having variable thickness has been conducted numerously 
by researchers. This includes the studies on vibration by applying the spline method on 
free vibration of layered circular cylindrical shells of variable thickness using extension 
of Love’s first approximation theory (Viswanathan et al., 2010), free vibration of 
symmetric angle-ply laminated cylindrical shells of variable thickness using first order 
shear deformation theory (Viswanathan et al., 2011), vibration of antisymmetric angle-
ply composite annular plates of variable thickness by implementing first order shear 
deformation theory (Nor Hafizah et al., 2018), a vibration of layered truncated conical 
shells of differently varying thickness using extension of Love's first approximation theory 
(Viswanathan and Navaneethakrishnan, 2005). Two layered truncated conical shells 
filled with quiescent fluid was studied (Nurul Izyan et al., 2017). Free vibration of 
symmetric angle-ply layered conical shell of variable thickness under shear deformation 
theory (Viswanathan, Javed and Aziz, 2013), free vibration of laminated conical shell of 
variable thickness that includes first order shear deformation and considers shells as 
antisymmetric angle-ply orientation (Viswanathan, Nor Hafizah and Aziz, 2018) and free 
vibration of antisymmetric angle-ply conical shells having non-uniform sinusoidal 
thickness variation under first order shear deformation (Javed et al., 2016). 

 
     By applying Ritz method, free vibration analysis of functionally graded spherical 
torus structure with uniform variable thickness along axial direction under first-order 
shear deformation theory (Gao et al., 2019). An analytical method was analysed for the 
free vibration of a fluid loaded (submerged) ring-stiffened conical shell with variable 
thickness in the low frequency range based on the Flugge theory and the governing 
equations of vibration of a ring-stiffened conical shell are developed in the form of a 
coupled set of the first order differential equations (Liu, Liu and Cheng, 2014). An analysis 
is presented for the free vibration of a truncated conical shell with variable thickness by 
use of the transfer matrix approach. The applicability of the classical thin shell theory is 
assumed and the governing equations of vibration of a conical shell are written as a 
coupled set of first order differential equations by using the transfer matrix of the shell 
(Irie, Yamada and Kaneko, 1982). Axisymmetric free vibrations of laminated conical 
shells with a linear thickness variation in the meridional direction using Rayleigh-Ritz 
procedure was adopted for the analysis and a classical thin shell theory was used 
(Sankaranarayanan, Chandrasekaran and Ramaiyan, 1987). 

 
     Spline method is one of approximate method in solving boundary value problem 
equations (Bickley, 1968). In general, spline functions are generally acknowledged by 
Schoenberg (1946). The spline method can be found in the literature (Schoenberg and 
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Whitney, 1953; Ahlberg, Nilson and Walsh, 1967; Greville, 1969). Studies on vibration of 
shell structures using the method of spline and the equations were formulated by Love’s 
first approximation theory included axisymmetric free vibration of layered cylindrical shell 
filled with fluid (Nurul Izyan et al., 2021). Furthermore, vibration of symmetrically layered 
angle-ply (Nurul Izyan and Viswanathan, 2019) and cross-ply (Nurul Izyan et al., 2019) 
cylindrical shells filled with fluid the first order shear deformation theory was conducted. 
Using the same method, free vibration of cross-ply laminated plates based on higher-
order shear deformation theory was presented (Javed et al., 2018). 

 
     The present study analyses the shell behavior of elastic truncated conical shells 
filled with quiescent fluid. The fluid is assumed to be inviscid and incompressible. The 
shell with variable thickness is considered. The thickness variations are assumed to be 
linear, exponential and sinusoidal along the radial di-rection. The layers are considered 
to be thin, elastic and specially orthotropic or isotropic and assumed to be bonded 
perfectly together and to move without interface slip. By applying Love’s shell theory, the 
equations of motion of the truncated conical shell are coupled in the longitudinal, 
circumferential and transverse displacement components. The displacements 
components are assumed in a separable form and a system of coupled differential 
equations in displacement functions are obtained. Then, the displacement functions are 
approximated by splines which are cubic and quintic. Collocation with these splines 
yields a set of field equations together with the equations of boundary conditions. Hence, 
it reduces to a system of homogeneous simultaneous algebraic equations on the 
assumed spline coefficients which resulting to a generalized eigenvalue problem. The 
eigenvalue problem is solved using eigensolution technique to obtain as many 
eigenfrequencies as required, starting from the least. From the eigenvectors the spline 
coefficients are computed from which the mode shapes are constructed. Two layered 
shells with different types of material such as S-glass Epoxy (SGE), High Strength 
Graphite Expoxy (HSG), PRD-490 III epoxy (PRD) and Aluminium (Al) are considered. 
The parametric studies concerning the effects of relative layer thickness, semi cone 
angle and length ratio of the cone under different boundary conditions on the frequencies 
are presented. The variations in thickness also are considered. 
 
 
2. THEORETİCAL FORMULATİON 
 
     2.1 Equations of shell 
     Consider a composite laminated truncated conical shell with an arbitrary number 
of layers, which are perfectly bonded together. Each layer is assumed to be 

homogeneous, linearly elastic and isotropic or specially orthotropic. ar  
and br  are the 

radii of the cone at its small and large ends,   is the semi-vertical angle and b a= −  

is the length of the cone along its generator. The wall thickness is denoted by h. The 
orthogonal coordinate system ( , , )x z  is fixed at its reference surface, which is taken to 

be at the middle surface and ,u v and ware longitudinal, circumferential and transverse 

displacements. The radius of the cone at any point along its length is sinr x = . The 

radius at the small end of the cone is sinar a =   and the other end is sinbr b =  . 
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Equations of motion of truncated conical shell included fluid is given as 
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where ,xN N  and xN   are the force resultants, ,xM M  and xM   are the moments 
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The strain–displacement relations of truncated conical shell are as follows 
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The stress-strain relations of k-th layer by neglecting the transverse normal stress and 
strain are defined as 
 

( )

( )

( )

( ) ( )

( ) ( )

( )

( )

( )

( )

11 12

12 22

66

0

0 ,

0 0

k k k k

x x

k k k k

k k k

x x

Q Q

Q Q

Q

 

 

 

 

 

    
    

=    
    
    
    

 

 
 
 
(4) 

 
Applying Eq. (3) into Eq. (4) and then substituting into Eq. (2), the force and moment 
resultants can be obtained as 
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where ,ij ijA B  and ijD  are the extensional rigidities, the bending-stretching coupling 

rigidities and the bending rigidities defined by 
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with , 1, 2,6.i j =
kz  is the distance from midsurface to the surface of k-th layer. For a thin 

shell, k

ijQ  is reduced stiffness defined as 
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The elastic coefficients ,  and ij ij ijA B D corresponding to layers of uniform thickness wi

th superscript 'c ' can easily be obtained as ( ), ( ), ( ),c c c

ij ij ij ij ij ijA A g x B B g x D D g x= = =  in 
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which  
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where 1,k kz z − are boundaries of the kth layer. 

 

The thickness of the kth layer is assumed in the form 
0( ) ( ),k kh x h g x=   where 0kh  is a 

constant thickness. If ( ) 1g x =  , then the thickness becomes uniform. For variable 

thickness, g(x) is a function of x; 
0( ) ( ),kh x h g x= . Therefore, the thickness variation of each 

layer is assumed in the form 
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If (𝐶𝑒 = 𝐶𝑠 = 0 ), then the thickness variation becomes linear. It can be written as 
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ness varies exponentially. If (𝐶𝜄 = 𝐶𝑒 = 0), then the excess thickness varies sinusoi
dally. The thickness of the layer at X = 0 is  ℎ0𝑘 for the first and third cases, bu

t the thickness is  ℎ0𝑘(1 + 𝐶𝑒) for the second case. 
 
     The force resultants and moment resultants are expressed in terms of the 
longitudinal, circumferential and transverse displacements u, v and w of the reference 
surface. The displacement components ,u v and w  are assumed in the form of 
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where x   and    are the longitudinal and rotational coordinates,    is the angular 

frequency of vibration, t  is the time and n  is the circumferential node number.  
 

     2.2 Fluid Term 
 
     The fluid is assumed to be incompressible, inviscid and quiescent. The velocity 
potential satisfied the Laplace equation. Laplace equation is expressed in conical 
coordinates system ( , , )x    (Paidoussis, 2004) (Nurul Izyan et al., 2017) 
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where   is the velocity potential. Therefore 
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where , andxV V V   are components of the fluid velocity.  

 
Velocity potential is assumed as follows 
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Using Bernoulli’s equation, pressure exerted by the fluid on the shell wall is written as 
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where f  is the density of the fluid. The impermeability condition is applied to ensure 

the contact between the shell and the fluid, as follows 
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The following non-dimensional parameters are introduced 
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     Here, 

kh  is the thickness of the k-th layer, h is total thickness of the shell, 
0h  is 

the constant thickness and 
ar  is the radius of the small end of the cone. 

 
     By applying the non-dimensional parameters (Eq. 14), the equations of the motion 
of the coupled system in terms of ,U V and W displacements are obtained in the form  
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where ijL  are the differential operators (Nurul Izyan et al., 2017). 

 
     Since third of Eq. (15) contains derivatives of third order in U, the form of Eq. (15) 
is not convenient to the solution procedure we propose to adopt.  Hence, the equations 
are combined within themselves and a modified set of equations are derived. First of Eq. 
(15) is differentiated with respect to X and used to eliminate U ′′′(X) in third equation. The 
modified set of equations are given by 
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where ijL  are the updated differential operators (Nurul Izyan et al., 2017). 

 
 
 
3. SOLUTION PROCEDURE 
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     3.1 Spline collocation method 

 
     Bickley (1968) presented a spline collocation approach over a two-point boundary 
value problem, bringing out its computational superiority to other schemes like Hermite 
interpolation. With his prediction that a lower order approximation may yields better 
accuracy than a global higher order approximation, he constructed his cubic spline over 

the mesh In this problem, the displacement functions ( ) ( ) ( ),  and U X V X W X  are 

approximated by cubic and quintic spline functions ( ) ,U X ( ) ( ) and V X W X   as 

follows 
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     Here, ( )jH X X−  is the Heaviside step function. N is the number of intervals in 

the range of  0,1X   is divided. The points of division , ( 0,1,2,... )s

s
X X s N

N
= = =  are 

chosen as the knots of the splines as well as the collocation points. Imposing the 
condition that the differential equations given by Eq. (16) are satisfied by these splines 
at the knots, a set of 3 3N +  homogeneous equations into 3 11N +  unknown spline 

coefficients , , , , , ( 0,1,2,3,4i j i j i ja b c d e f i = ; 0,1,2,..., 1)j N= −  is obtained. 

 
     3.2 Boundary condition 
 
     The following boundary conditions are used to analyse the problem which are 

 
i. Clamped-Clamped (C-C);  
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     By applying the boundary conditions, gives eight more equations on spline 
coefficients. Combining these eight equations with the earlier 3 3N +  homogeneous 

equations, we get 3 11N +  homogeneous equations in the same number unknowns. 

Thus, one obtains the generalized eigenvalue problem as follows 
 

     2 ,M q P q=  (18) 

 
where [M] and [P] are square matrices, {q} is a column matrix of the spline coefficients 
and   is a frequency parameter.  

 
 
4. RESULTS AND DISCUSSIONS 

 
     The variation of frequency parameter values with respect to relative layer thickness, 
cone angle and length ratio are analysed. The linear, exponential and sinusoidal 
variations in thickness of layers are taken into consideration. The variation of frequency 
parameter with respect to the relative layer thickness, along with the effect of including 
and neglecting the coupling between extensional and flexural vibration with variation in 
thickness of layers namely; linear (Fig. 1), exponential (Fig. 2) and sinusoidal (Fig. 3). 
Figs. 1-3 consist of plots of 𝜆𝑚(m = 1,2, 3), where 𝑚 is the meridional mode number, 

against 𝛿. The continuous and dashed lines correspond respectively to the inclusion and 
neglect of the coupling effect between the longitudinal and flexural deflections, 
characterized by taking 𝐵𝑖𝑗 ≠ 0 and 𝐵𝑖𝑗 = 0, respectively. Two layered shell at both 

ends of the cone are clamped were considered with material combination of HSG-SGE, 
HSG-PRD and St-SGE. 
 
     Thickness of the layers vary linearly (𝐶𝜄 ≠ 0, 𝐶𝑒 = 0, 𝐶𝑠 = 0) were considered as 

shown in Fig. 1. The taper ratio 𝜂, which is the ratio of the thickness of the shell at 𝑥 = 𝑎 
to its thickness at 𝑥 = 𝑏, is 0.5. The semi cone angle 𝛼 is 30𝑜. The length ratio 𝛽 is 

0.5; the shell considered to be of medium length, compared to short shells (large 𝛽) and 

long shells (small 𝛽). The thickness parameter 𝛾 is set equal to 0.05. Fig. 1(a) shows 
the frequency parameter with the shell made up of HSG-SGE materials. The inner and 
outer layers are made up of HSG and SGE materials, respectively. Thus, when 𝛿 = 0, 
the inner layer disappears and the shell in homogeneous, made up of SGE; when 𝛿 = 1, 

it is again homogeneous, made up of HSG. For 0 < 𝛿 < 1, both layers are present. 
Generally, the frequency parameter variation curves corresponding to the lowest 
meridional mode; 𝑚 = 1 have the least undulations. As 𝑚 grows, the undulations get 
more and more pronounced.  
 

     Exponential variations in thickness of layers (𝐶𝜄 = 0, 𝐶𝑒 ≠ 0, 𝐶𝑠 = 0)  were 

analysed as depicted in Fig. 2. The parameter 𝛼 = 300, 𝛽 = 0.5, 𝛾 = 0.05 and 𝐶𝑒 = 0.2 
were fixed. As for Fig. 3, the analysis on the sinusoidal variations in thickness of layers 
(𝐶𝜄 = 0, 𝐶𝑒 = 0, 𝐶𝑠 ≠ 0) was carried out. The parameter 𝛼 = 300, 𝛽 = 0.5, 𝛾 = 0.05 and 

𝐶𝑠 = 0.2 were set. Both values of 𝐶𝑒 and 𝐶𝑠 has been taken to limit the range of values 



The 2023 World Congress on 
Advances in Structural Engineering and Mechanics (ASEM23)
GECE, Seoul, Korea, August 16-18, 2023

of these parameters so that the thickness does not vanish or become negative anywhere 
and the thin shell assumptions are valid. 
 
     In the case of HSG-PRD laminations, the layers are orthotropic and with the ratios 

𝐸𝑥/𝜌 comparable, though not nearly same; and hence the frequencies are not much 
affected by relative thickness of layers (Fig. 1(b), Fig. 2(b) and Fig. 3(b)). For other 
material combinations; HSG-SGE (Fig. 1(a), Fig. 2(a) and Fig. 3(a)) and St-SGE (Fig. 
1(c), Fig. 2(c) and Fig. 3(c)) pronounced variations in frequencies are observed. In the 

case of St-SGE shells, though steel and SGE possess very close 𝐸
𝜌⁄  ratios 

(2.696x107𝑚2𝑠−2) and (2.530x107𝑚2𝑠−2), respectively yet the variation in frequency is 
considerable, perhaps due to the effect of material orthotropy in the case of SGE.  
 
     Generally, it is seen as a common feature that the neglect of this coupling results 
in increase of the values of the frequencies and the increment is negligibly small. The 
maximum change occurs for 0.2 < 𝛿 < 0.6. For nearly homogeneous conditions; 𝛿 ≤
0.1 and 𝛿 ≥ 0.9, the differences are much less, vanishing for homogeneous materials 
(𝛿 = 0 or 1). 
 

       
     

Fig. 1 Variation of frequency parameter with relative layer thickness and the effect of 
coupling: conical shells of linear variation in thickness of layers under C-C boundary 

conditions 
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Fig. 2 Variation of frequency parameter with relative layer thickness and the effect of 

coupling: conical shells of exponential variation in thickness of layers under C-C 
boundary conditions 

 

    
     

Fig. 3 Variation of frequency parameter with relative layer thickness and the effect of 
coupling: conical shells of sinusoidal variation in thickness of layers under C-C 

boundary conditions 
 

     Fig. 4 indicates the variation of the frequency parameter ( 1,2,3)m m =  with respect 

to the semi cone angle under C-C boundary conditions. Linear (𝜂 = 0.7), exponential 
(𝐶𝑒 = 0.15), and sinusoidal (𝐶𝑠 = 0.2) variations are shown in Fig. 4(a), Fig. 4(b) and Fig. 

4(c), respectively. The materials arranged in the order HSG-SGE with 𝑛 = 2, 𝛽 =
0.5, 𝛾′ = 0.05 and  𝛿 = 0.4. When the cone angle 𝛼 varies, 𝑟𝑎 = 𝑎 sin 𝛼 also varies, and 
hence 𝛾 = ℎ(𝑎)/𝑟𝑎 cannot be held constant. Instead, another parameter 𝛾′ = ℎ(𝑎)/𝑎  
is considered. 𝛾 = 𝛾′cosec 𝛼. The frequency parameter values are found to decrease 
with increasing cone angle. The decrease is rapid and almost constant up to 𝛼 = 20𝑜 
for all cases considered. The same characteristic pattern of changes of frequencies with 

𝛼 is observed when the layers of the shells are varying in thickness (linear, exponential, 
and sinusoidal). 
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Fig. 4 Effect of cone angle on frequency parameter: (a) linear, (b) exponential, and (c) 

sinusoidal variations under C-C boundary conditions 
 
     The variation of angular frequencies, 𝜔 with respect to length of the cone under C-

C boundary conditions with linear (𝜂 = 0.7), exponential (𝐶𝑒 = 0.15), and sinusoidal (𝐶𝑠 =
0.2) variations are shown in Fig. 5(a), Fig. 5(b) and Fig. 5(c), respectively. HSG-PRD 

material of two layered shell with 𝑛 = 2, 𝛼 = 300, 𝛾 = 0.05 and  𝛿 = 0.4 is set.  
 
     Since 𝜆 is a function of the length ℓ of the shell by definition, it may not be 
meaningful to study the variation of 𝜆 with 𝛽. Thus, the relation between the angular 

frequency, 𝜔 and 𝛽 is studied. Since some length parameter must be given a specific 

value in such cases, ℎ(𝑎)=1cm is set for all cases considered. The frequencies increase 
with increase in 𝛽 i.e., with decreasing cone-length. The increase is gradual and steady 

up to some value of 𝛽, and rapid afterwards. For very short shells (𝛽>0.8), frequencies 
are very high. 
 

         
 

 
Fig. 5 Effect of length of cone on frequency parameter: (a) linear, (b) exponential, and 

(c) sinusoidal variations under C-C boundary conditions 
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     The influence of the nature of variation of thickness of the layers of the shell on its 
frequency under different types of boundary conditions is shown in Fig. 6-8. Two layered 

shell with HSG-PRD material is used. 𝑛 = 2, 𝛼 = 300, 𝛽 = 0.5, 𝛾 = 0.05 and  𝛿 = 0.4 is 
considered.  

 
     Fig. 6 corresponds to frequencies, 𝜆𝑚(m = 1,2, 3) with respect to linear variation in 
thickness of layers in the range of 0.5 < 𝜂 < 2.1. When the taper parameter, 𝜂 = 1, the 
thickness is constant. The thickness at the larger end of the cone is larger or smaller than 
the thickness at the smaller end, according as 𝜂>

<1. Result shows that 𝜆𝑚(m = 1,2, 3) 

decreases with increase of 𝜂. This is aligned with the fact that the smaller the value of 

𝜂, the larger is the thickness, resulting in higher stiffness. It can be seen that frequencies 
for all modes in C-C boundary conditions (Fig. 6(a)) is higher than C-F boundary 
conditions (Fig. 6(b)). The effect of 𝜆𝑚 is higher for higher mode. Also, the fundamental 
frequencies are least influenced in the case C-F boundary conditions. The curves are 
convex down for all the cases of Fig. 6. 
 
     The study on the effect of exponential variation in thickness of layers to frequencies, 
𝜆𝑚(m = 1,2, 3) under C-C and C-F boundary conditions as depicted in Fig. 7(a) and Fig. 

7(b), respectively. When 𝐶𝑒 = 0, thickness is uniform. The thickness at the wider end of 

the cone is higher or lower than the thickness at the other end according as 𝐶𝑒 0>
< . This 

explains why the frequencies are highest and lowest at 𝐶𝑒 = ∓0.25 , respectively. 

Frequencies increase as 𝐶𝑒 increases. The effect of 𝜆𝑚 is higher for higher mode. The 
frequencies for all modes in C-C boundary conditions (Fig. 7(a)) is higher than C-F 
boundary conditions (Fig. 7(b)). 
 
     The effects of sinusoidal variation in thickness of layers on frequency parameters 
are analysed as shown in Fig. 8. C-C boundary conditions (Fig. 8(a)) while C-F boundary 
conditions (Fig. 8(b)) are considered. These effects are almost similar to exponential 
variation as discussed in Fig. (7). 
 

  
  

Fig. 6 Effect of taper parameter on frequency parameter 
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Fig. 7 Effect of coefficient of exponential variation of thickness of layers on fr
equency parameter 

 

  
  

Fig. 8 Effect of coefficient of sinusoidal variation of thickness of layers on fre
quency parameter 

 
 
5. CONCLUSIONS 
 
     Vibration of two layered conical shell with the effect of fluid is investigated. The 
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neglecting the bending-stretching coupling is generally increase the frequencies with 
minimal increments. By a proper choice of 𝛿, a desired frequency of vibration can be 
achieved. 
 
     Increasing cone angle led to decrease the frequencies in all cases. This effect is 
significant for lower modes and less significant for shorter shells.  For any particular set 
of geometric parameters, the frequencies decrease as the length of the cone decrease. 
The effect is higher for higher modes. 
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     The variation in thickness of layers (linear, exponential, sinusoidal) influence the 
natural frequencies of vibrations. For linear variation in thickness, the effect of taper ratio 
is high for both short shells and very small values of the taper ratio. In the case of 
exponential and sinusoidal variations in thickness of layers, the frequencies increase 

almost proportional to the corresponding coefficients of variation 𝐶𝑒 and 𝐶𝑠. The rate of 
increase is higher for higher meridional modes. 
 
     By increasing the cone angle result in decreasing the frequencies while by reducing 
the length results in increasing the frequencies. These patterns are similar for all 
variations (linear, exponential, sinusoidal) in thickness of layers considered.  
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